viernes, 2 de mayo de 2014
Integral Indefinida
Integral indefinida
Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.
Se representa por ∫ f(x) dx.
Se lee : integral de f de x diferencial de x.
∫ es el signo de integración.
f(x) es el integrando o función a integrar.
dx es diferencial de x, e indica cuál es la variable de la función que se integra.
C es la constante de integración y puede tomar cualquier valor numérico real.
Si F(x) es una primitiva de f(x) se tiene que:
∫ f(x) dx = F(x) + C
Para comprobar que la primitiva de una función es correcta basta con derivar.
Propiedades de la integral indefinida
1. La integral de una suma de funciones es igual a la suma de las integrales de esas funciones.
∫[f(x) + g(x)] dx =∫ f(x) dx +∫ g(x) dx
2. La integral del producto de una constante por una función es igual a la constante por la integral de la función.
∫ k f(x) dx = k ∫f(x) dx
Integral indefinida
Dada una función f definida en un intervalo I se dice que otra función F es una primitiva de f en I si F es derivable en I y F'=f en I.Si consideramos la función f(x)=2x, las funciones
son primitivas de f pues la derivada de cada una de ellas es 2x.
Dada una función f, no existe para ella una única primitiva F, ya que cualquier otra función de la forma F+C, donde C es una constante, también cumple la condición de que su derivada es igual a fAdemás, si F y G son primitivas de f en I entonces F-G=C (constante) en I pues
Las primitivas de una función forman una familia de funciones cuya representación gráfica es siempre la misma, estando cada una desplazada verticalmente respecto de las demás:
Al conjunto de todas las primitivas de una función f se le llama integral indefinida de f y se representa por
Para f(x)=2x se tiene
Teniendo en cuenta las derivadas de las funciones f "elementales" (potencias, exponenciales, trigonométricas, y sus inversas) obtenemos las siguientes integrales indefinidas:
Las igualdades anteriores son ciertas cuando las expresiones que aparecen en ellas tienen sentido. Así, por ejemplo
Sin embargo en I=(- ∞,0) obtenemos
Propiedades de la integral indefinida
Se verifica:
Estas propiedades son consecuencia de la linealidad de la derivación:
Utilizando la propiedad de linealidad de la integral indefinida y las primitivas de funciones sencillas podemos calcular la siguiente integral:
La generalización de estos resultados aparece en la tabla de integración inmediata.
Integral Definida
Integral definida
Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x = a y x = b.
La integral definida se representa por
.
∫ es el signo de integración.
a límite inferior de la integración.
b límite superior de la integración.
f(x) es el integrando o función a integrar.
dx es diferencial de x, e indica cuál es la variable de la función que se integra.
Propiedades de la integral definida
1. El valor de la integral definida cambia de signo si se permutan los límites de integración.
2. Si los límites que integración coinciden, la integral definida vale cero.
3. Si c es un punto interior del intervalo [a, b], la integral definida se descompone como una suma de dos integrales extendidas a los intervalos [a, c] y [c, b].
4. La integral definida de una suma de funciones es igual a la suma de integrales·
5. La integral del producto de una constante por una función es igual a la constante por la integral de la función.
Función integral
Sea f(t) una función continua en el intervalo [a, b]. A partir de esta función se define la función integral:
que depende del límite superior de integración.
Para evitar confusiones cuando se hace referencia a la variable de f, se la llama t, pero si la referencia es a la variable de F, se la llama x.
Geométricamente la función integral, F(x), representa el área del recinto limitado por la curva y = f(t), el eje de abscisas y las rectas t = a y t = x.
A la función integral, F(x), también se le llama función de áreas de f en el intervalo [a, b].
Suscribirse a:
Comentarios (Atom)